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It is known [1-3] that the heat-affected zone (HAZ) of welds, due to features of the 
welding operation, is subject to nonuniform, continuously varying stresses. Due to the action 
of these thermal stresses and structural-phase processing stresses, the metal of the HAZ 
undergoes plastic strains which lowers its strain-hardening capacity during laoding in ser- 
vice. Also, these factors may be the cause of processing-induced cracks in the weld. 

The present study examines the problem of evaluating the effect of a small disk-shaped 
processing-induced crack on weld strength. The crack is located in the plane of a thin HAZ 
acted upon by external stresses. Here, the character of the behavior of the metal in the HAZ 
can be associated with the following properties, accordingto the data in [1-4]: 

-- the elastic characteristics of the HAZ metal are equal to the elastic characteristics 
of the surrounding volumes of metal, while the strength characteristics are lower. This means 
that plastic Strain may be localized in the relatively thin layer of HAZ metal ~nile the sur- 
rounding volumes of metal remain elastic; 

-- with uniaxial tension of the weld in the direction perpendicUlar to the plane of the 
HAZ (given the absence of initial cracks in the HAZ) under conditions of ideal stress-control- 
led loading, fracture of the HAZ metal occurs after a small amount of strain-hardening when the 
ultimate strength Ou is reached in it; under conditions of ideal strain-controlled loading, 
attainment of the ultimate strength with a further separation of the boundaries of the HAZ is 
followed by a smooth decrease in the load connected with the accumulation of strains in the 
HAZ metal; 

-- with uniaxial tension of the weld in the direction perpendicular to the HAZ under 
conditions intermediate between ideal stress- and ideal strain-controlled loading, after the 
HAZ metal reaches its ultimate strength it behaves initia!ly as in the case of ideal strain- 
controlled loading; it fractures after a certain strain level is reached, as in the case of 
ideal stress-controlled loading. 

When examining the behavior of the HAZ metal at the edge of the crack, it is expedient 
to proceed on the basis of the complete curve-describing the force versus the displacement of 
the boundaries of the HAZ. This curve terminates in a smoothly decreasing (to zero) softening 
section. Such a curve is shown in Fig. la by Curve I. Here, we have used the following nota- 
tion: h is the initial thickness of the HAZ; s is the separation of the boundaries of the 
HAZ; q are the forces applied along a normal to the boundaries of the HAZ, referred to a unit 
area of the cross section; Ou is the ultimate strength of the HAZ metal; E is the elastic 
modulus of the HAZ metal. With a reduced strain-hardening capacity~ the actual curve can be 
approximated by a piecewise-linear curve of the form 2 in Fig. la consisting of two sections. 
One section corresponds to nominally elastic behavior of the HAZ metal until attainment of the 
ultimate Strength ~u, while the other corresponds to linear softening of the HAZ metal after 
the passage of ~u. A good approximation can be obtained in this case if it is based on 
equality of the areas under the actual and approximating curves. 

By virtue of the above assumptions regarding the behavior of HAZ metal, the solution 
of the stated problem of evaluating the static strength of a weld with a small disk-shaped 
crack can be constructed on the basis of a model of linear softening metal in a thin plastic- 
strain zone adjacent to the edge of the crack [5-13]. To do this, we need to replot the in- 
itial curves relative to the irreversible displacements 6 = Ah -- hou/E of the boundaries of 
the HAZ with respect to each other, as shown in Fig. lb. Then the idealized curve will 

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnieheskoi Fiziki, No. 
2, pp. 144-150, March-April, 1985. Original article submitted February 28, 1984. 

0021-8944/85/2602-0289509.50 �9 1985 Plenum Publishing Corporation 289 



6n . . . .  / I 

. 2  1 

Fig .  1 

r e t a i n  on ly  the  d e s c e n d i n g  s o f t e n i n g  s e c t i o n ,  S h o ~  in  F ig .  lb by l i n e  2. The e q u a t i o n  of 
t h i s  l i n e  has the  form 

q =  o ~ 1 _ a / a ~ ,  0 ~ a ~ a u .  (i) 

The quantity ~u introduced here has the meaning of the limiting irreversible separa- 
tion of the HAZ boundaries at which a fracture surface appears under conditions of ideally- 
strain-controlled loading after a smooth decrease in the forces to zero. It is a constant of 
the HAZ metal for the given welding technology and should be determined from the condition of 
equality of the areas under the real and approximating stress~train curves. At the same 
time, the area under the forces -- irreversible displacement curve determines the work expended 
on fracture of a specimen of unit cross section cut out perpendicular to the HAZ, or the energy 
necessary to form two new fracture surfaces in the failed r:specimens (see, e.g., [14, 15]). 
Using ~ to designate the surface energy necessary to form a unit of new surface and using Eq. 
(i) to calculate the fracture work, it is not hard to find that 

8u=4V/%. (2) 
In the absence of the empirically hard-to-obtain record of the total curve showing force 
against displacements of the HAZ boundaries under conditions of ideal strain-controlled load- 
ing, derived equation (2) makes it possible to evaluate the constant Ou in Eq. (!) through the 
surface energy y. The method for exper~enta! determination of the latter is well established. 
Also, in the presence of experimental values of the criticalstress intensity factor Kic ob- 
tained on sufficiently large specimens with a.crack oriented along the HAZ, it is possible to 
use (2) (see, e.g., [14, 15]) to evaluate 6 u through the quantity Kic: 

where v is the Poisson's ratio. Thus, the quantity 6 u introduced in (I) is connected with the 
fracture toughness of the HAZ metal and turns out to be greater, the greater this toughness. 
Here, we will use Eqs. (i) and (3) to formulate the methods proposed in [11-13] to solve a 
problem involving determination of the stress state and stability of softening HAZ metal near 
the front of a disk-shaped processing-induced crack located in the plane of the HAZ. 

We will represent the weld with HAZ in the form of an infinite circular medium With an 

elastic modulus E and a Poisson's ratio v containing a planar crack having the form of a 
circle of radius a in plan. Let the medium be subjected at infinity to tension by a uni- 
formly distrihuted external stress p in the direction perpendicular to the crack plane. We 
will select the cylindrical coordinate system Ozr ~sho~ in Fig. 2. It is assumed that during 
loading a thin annular zone of weakened bonds (ZWB) appears at the edge of the disk-shaped 
crack. This zone is characterized by the presence of irreversible separations ~ of the bound- 
aries of the HAZ. The radial dimension d of this zone depends on the magnitude of the applied 
load, which is unkno~ beforehand and must be found in the course of solving the problem. The 
actual crack, of radius a, is nominally increased in size by an amount corresponding to the 
size of the ZWB so that the radius of the imaginary disk-shaped crack becomes equal to b = a + 
d. It is assumed that the edges of the imaginary crack on the ZWB section from a to b interact 
with each other in accordance with Eq. (i), where q = q(r) and 6 = ~(r) represent the forces of 
interaction and the separation of the edges of the;imaginary crack. We know the following ex- 
pression for separation of the crack edges from the solution of the problems of a planar cir- 
cular crack Of radius b, the surface of which is subjected to normal self-balanced axisy~etric 

loads s(r) (see, e.g., [16]): 

. 2~ ~/i b s i n  

S ( t ~ v  ~ ~ I s(t)tdtda O ~ r < b .  (4) 
8 (r) - -  n E  ~ J " V t ~ - -  r2 sin" 2~" 

0 .  r sin 
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For the problem being examined here, the load s(t) is determined from the formula 

s(t) IP" �9 for O~t<,.~a, 
= [ p - - q ( t )  mr a ~ t ~ b .  ( 5 )  

Inserting (i) and (5) into (4), we obtain an integral equation to determine the forces of in- 
teraction q(r) of the edges of the imaginary crack on the ZWB section from a to b: 

where 

a r c  s i n ~ b s  (z 

q (r) - -  

l_ a r c  Si l l  a a 

q (t)tdtd a 

V t - -  r 2 s in 2 o~ 
y ~ q(t) tdtda , I ~ (6) 

~- . " l / t 2 _ r 2 s i n 2  a : ~ t l - -  P V ~  at  a ~ r ~ . ~ b ,  
a r c  s i n  a r s i n  

m - -  ~ E ~ u !  [8(1 -- v~)(~U]. (7) 

The coefficient m in this equation is a constant of the HAZ metal for a given welding tech- 
nology, has the dimension of length, and with allowance for Eq. (3) is expressed in the form 

~ =  (~/4)(KM~u)2, (8) 

i.e., it is a characterstic of the fracture toughness of the HAZ metal. To determine the un- 
known dimension b in Eq. (6), it must be agumented by the condition of smoothness of the 
joining (closure) of the edges of the imaginary crack: 

d~(r)/drlr=b = O. 

With allowance for (4) and (5), this condition is written in the form 

b 

pb ---- y " q (t) tdt _ 
] / ; 2  _ t ~-" 

(9) 

Derived integral equation (6) is a second-order Fredholm equation with a positively 
determined kernel. It has a unique solution with an arbitrary right side if the coefficient 
m does not coincide with any of the eigenva!ues mi (m i m mi+1 > O, i = i, 2, 3, ...) corre- 
sponding.to the homogeneous integral equation. Since the dimension b is present in the inte- 
gral terms of Eq. (6), each eigenvalue of the homogeneous integral equation is actually a 
monotonically increasing function of the dimension b or of the associated dimension d = b -- a. 
An increase in the applied load p, in accordance with (9), entails an increase in the dimen- 
sion b (or d). The latter in turn leads to an increase in the eigenvalues m i of the corre- 
sponding homogeneous integral equation. Here, as long as the first maximum eigenvalue ml is 
less than the material constant m, integral equation (6) will have a solution with an arbitrary 
right side. The necessary condition for the existence of a solution to integral equation (6) 
is first violated when ml becomes equal to m. According to [11-13], this moment is identical 
to the moment of loss of stability of the crack in the initial physical problem.* 

*The corresponding critical values of the sought quantities are designated below by anasterisk. 
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TABLE 1 

o 10 001 0,00, 0 001 0000 I o, oo, ,o,ool oioo L~176176 _ t,000 

M1 10't0610,2t0[0'31310,4131 0'512]0,6i01 0'707 0,802 0,896 t 0,990 

The eigenvalue m~ of the homogeneous integral equation corresponding to integral equa- 
tion (6)was determined and Eq. (6) was solved together with auxiliary conditions (9) with 
m{ # m by numerical relative to the dimensionless quantities: 

R = r / a ,  T =  t / a ,B=  b/a,D = d /a ,Q- 'q /~a ,P=p/aa ,  M =  m/a, M l = m J a .  

Here, the segment [i, B] was broken down into 20 intervals. It was assumed that in 
each interval the sought stress Q(R) is constant, and integral equation (6) was accordingly 
approximated for each specific value of B by a system of twentieth-order linear algebraic equa- 
tions. The integrals over ~ entering into the determination of the coefficients of this sys- 
tem were calculated from the Gauss integration formula to within three signs, inclusively. 
We then calculated the eigenvalue M~ corresponding to a homogeneous approximating system for 
each specified value by B by the Kellog method of successive approximations [17]. The calcu- 
lations were performed to within three signs, inclusively. The approximating system was solved 
for specified values of M # MI by the Gauss elimination method. The solution was obtained 
separately for the first and second terms (with P = i) of the right side of Eq. (6), and we 
subsequently formed a linear combination of the two solutions with an unknown multiplier P 
ahead of the second term and determination of P from auxiliary condition (9). 

Table 1 shows results of calculations of the first eigenvalue M~ of the approximating 
homogeneous system. It is apparent that the first eigenvalue MI depends roughly linearly on 
the size D of the zone of weakened bonds, i.e., M~ = D. The crack reaches the critical state 
when MI reaches the values M. The corresponding critical dimension D, of the zone of weakened 
bonds turns out to be roughly equal to the value of M. Using Eq. (8), we can write the fol- 
lowing relation in dimensional quantities: 

{Kz~ (i0) 
~* = T<77. / " 

It should be noted that the critical dimension d, of the ZWB for a disk-shaped crack is inde- 
pendent of both the applied load p and the size of the initial crack a and is determined only 

by the material constant m. 

The algebraic system which approximates Eq. (6) is solued with a specified value of M 

and with an increase in the dimension D with a certain step until its critical value D, is 
exceeded. The determinant of the system is calculated simultaneously. Here, as might be 
expected, the determinant was positive as long as D was less than D,. As soon as D turned out 
to be greater than D,, the determinant changed sign and became negative. It should be noted 
that this fact is convenient to use in solving problems with linear softening, since it makes 
it possible to solve the problem of crack stability without the use of special methods of 
determining eigenvaiues. One simply observes the sign of the determinant calculated during 
the solution of the algebraic system which approximates the corresponding integral equation. 

Figure 3 shows the stress distribution in a ZWB obtained by solving the approximating 

system with M~ = 1 for three ZWB sizes: D = 0.3; 0.6; 0.9. It is apparent that the stress 
Q(R) increases smoothly from a certain value Q (I) on the edge of the crack (R = i) to unity 
at the end of the ZWB (R = B). An increase in the applied load P and a corresponding increase 
in the size of the ZWB are accompanied by a decrease in the stream Q (i) on the crack edge. 
This stress takes a minimum value (for each specified value of M) in the critical state. The 
second line of Table 2 shows values of Q, (i) in the critical state for different values of 
M. This data and Eq, (i) make it possible to determine the corresponding dimensionless criti- 
cal crack opening 6,(1)/~u, which are show~ in the third line of Table 2. Analysis of the 
data in Table 2 shows that the descending section of the force--displacement curve may be stable 
for nearly its entire length only in the case of sufficiently small values of M, which corre- 
sponds to large crack sizes a or small values of the material constant m. This, in accordance 
with (8), in turn corresponds to a low fracture toughness for the HAZ metal. In the opposite 
case, i.e., when the crack size a is small or when the HAZ metal is fairly ductile, the de- 
scending section of the force-displacement curve is not completely stable. In the limit of 
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TABLE 2 

M ] 0,t0 

Q,(t) [ 0,09 

8,(t)/6~ 0,91 

0,25 ] 0,33 

0,t2 [, 0,t6 

0,88 I 0,84 

0,50 [ t,00 I 2,00 

o,23 ] o, o I o,. o 

an infinitely small crack, the force--displacement curve generally has no descending section 
under the stress-controlled loading conditions being examined here, and fracture occurs in 
accordance with the second assumption made at the beginning of the article. Here, tlhe stress 
q(r) in the ZWB becomes approximately constant and equal to Ou" 

Figure 4 shows the dependence of the size of the ZWB d/a on the magnitude of the ap- 
plied load p/o u obtained for different values of the parameter M. Despite the fact that local 
softening of the HAZ metal was assumed near the crack front, the global curve describing the 
behavior of the metal with a crack has only an ascending section until the critical state is 
reached. Attainment of this state is indicated in Fig~ 4 by the x's. The same pattern is 
seen in actual tests under stress-controlled loading. The fracture resistance of the HAZ 
metal with a crack, described by the global curve in Fig. 4, and the corresponding critical 
loads p, burn out to be higher, the greater the value of M, i.e., the smaller the initial 
crack a and the greater the material constant m. The latter is directly proportional to the 
square of the fracture toughness of the HAZ metal. In the limit of an infinitely small crack, 
the critical load p, approaches the ultimate strength Ou of the defect-free material. 

Figure 5 compares normalized critical loads P, = p,/o u for a disk-shaped crack obtained 
in thepresent study with normalized critical loads obtained from the most widely used criteria. 

The critical load for a disk-shaped crack obtained from the theory of brittle fracture 
is determined from the Zak formula (see, e.g., [16, 18]) 

~/ ~E? 
P* = 2 (t -- v 2) a " 

The corresponding normalized load, with allowance for (2) and (7), is ~ritten in the 
form 

p, = i]/~, (li) 

where G = a/m is the equivalent crack size. 

In the case when the stresses in a thin ZWB at the edge of adisk-shaped crack are con- 
stant and equal to o u -- which corresponds to the Leonov--Panasyuk model (see, e.g., [16]) -- the 
size of the zone of weakened bonds d and the crack opening 6(a) are determined from the follow- 
ing respective formulas, the exact formula depending on the applied load p 

d : a [ ~ / V t  - -  ( p /a u )2  - -  t]; (12 )  

6(a) = [8(1 ~ v 2 ) a u / ~ E l a [ t  = V 1 -- (p/%)~]~ (13)  

Taking a limiting separation of the HAZ boundaries equal to 0.5 o u as a constant of the HAZ 
metal in this model (this value was chosen so that the area under the ideal yield curve with a 
constant stress Ou would be equal to the area under the softening curve described by line 2 in 
Fig. ib), assuming that the crack opening @(a) sometimes (including in the critical state) does 
not exceed the limiting separation of the HAZ boundaries, i.e., ~(a) ~ 0.50u, and using Eqs. 
(2), (7), and (13), we obtain the upper estimate for the normalized critical load 

P, = -V4-G -- I/(2G), (14) 

where G can take values greater than 0.5. Insertion of (14) into (12) gives the corresponding 
upper estimate for the critical size of the ZWB: d, = 0.5m(l -- 0.5m/a), where a > 0.5m. In 
ccordance with this formula, the lowest upper estimate s d, occurs in the case of an infi- 
nitely large crack and proves to be equal to Oo5m. Use of this value of d, for 0.5m as the lower 
estimate of the critical size of the ZWB and its substitution into (12) gives the correspond- 
ing lower estimate of the normalized critical load 

P, - =  ] / 4 ~ / ( 2 C  + ~), (15) 
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We can use similar notations to write well-known (see, e.g., [18]) formulas for the 
critical loads with a disk-shaped crack on the basis of the general integral variational prin- 
ciple of the crack theory proposed in [19]. Here, for the case of a constant crack opening 
and for the case of proportionality of the crack openingto the applied load, we respectively 
have the following normalized critical load: 

P ,  ~ ( i 4 ~  -- i)/(2G); (16) 

P ,  = ~ / V G  + I. ( 1 7 )  

The loads P, calculated in this study on the basis of the solution of integral equa- 
tion (6) with a specified value of M = I/G exceed the loads determined from Eq. (15) by no 
more than 1%. Thus, they correspond to curve 1 inFig. 5. Curves 2~5 correspond/to Eqs. (ii), 
(14)~ (16), and (17). Comparison of curve 1 wlth curves 2-5 shows that if the HAZ metal is duc- 
tile or if the crack radius is small (in other words, if G is small), then the differences in 
the results will become noticeable. Meanwhile, Eqs, (i!) and (14) cease tobe valid at values 
of G respectively less than I and 0.5. When G = 0.5, the value of P, obtained from Eq. (ii) 
is greater than I. This contradicts the findings of actual tests. The value of P, obtained 
from Eq. (14) exceeds the value of P, obtained in this Study by 14%, while the values of P, 
obtained from Eqs. (15)-(17) are less than the values obtained in this study by I, 17, and 7%, 
respectively. The foregoing comparison shows that for the investigated disk-shaped crack, 
with linear softening of the material in a thin ZWB, the normalized critical loads can be de- 
termined with sufficient accuracy from Eq. (15) without resorting to numerical solution of 
integral equation (6). Here, the value of the critical load is smaller than the corresponding 
values obtained from models based on a nondecaying stress-strain curve, while it is larger 
than the corresponding values obtained from the conservative estimates in [18] -- which did not 
consider the specific character of the behavior of the material at the crack tip~ 

In conclusion, we should note that actual HAZ metal has a tendency to strain-harden to 
this or that degree. In connection with this, to correctly describe the behavior of a crack 
it is generally necessary to use a more complicated idealized curve of force versus dis~lace~ 
ment of the HAZ boundaries. This more complicated curve includes not only the elastic and 
linear-softening sections, but also the strain-hardening section~ An idealized curve contain- 
ing the elastic, hardening, and softening sections should obviously lead to an increase in the 
critical load for the same given size of equivalent crack relative to case examined here~ where 
the curve contained only the elastic and softening sections but had the same area as the curve 
with three sections. Thus, in the absence of a complete experimental curve plotting force 
versus displacement of the HAZ boundaries but in the presence of strength characteristic o u 
and fracture toughness characteristic Kic for the HAZ metal, to obtain the most conservative 
esimate of the critical load it is necessary to proceed on the basis of the idealized, two- 
section curve examined in the present study. The limiting irreversible separation of the 
boundaries of the HAZ for such a curve is evaluated from Eq. (3)~ 
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